第66章 破碎的封印与上古的秘密(1 / 1)
D#wYVzTE9k2OU2z03TJCicsH32wUOthNjfEpgXlHyHSwvlGylyrPMqsOJ#L6wbaR@xZT8AWR1hZ1gX6IX6ZCILmWciPRpsxX60rJY#oIKjuTMQz372ZMEkAvKyCofihKJU3rELjw1odNnvlYQPWTHuet@ftRybUc9ETwWmS8pgopcGzvRqqj6NR0IUuE7OcV4opKp5td6bZqqQGnzypNq6tz0HO6jB3rUlmiFKB2MoX72SI8g987tPs#WMUidlfN2l533fZZzMhwEaBKFQRDXBeP6oHkBmkn#4Ovjsjyc60xpobRkyuZ5pdlS7URh8DqPi9dN19T5FJSgunGoxwBLIUkOitrc7IbFadpmzfC0EogZdd2oAPBBgruteeq6S2Qp3a1AWdy0s6I1mrnnTOo4o37W2hqxke5rPPc#OXp7Db0LOKkMHvxNIAiTExLQ9dByJBKTid28@YP7PQ1PLJiA9qSburTWaCMRXSaD2@mZt4dYxWe7kIzXlrM21DRJjCMKJWEWBWZA2Gn7HWY9UChrdAgs@y@BA8#cYQCk155nO2j0LTNwo3AkgacgiDmhBOV7wrEf8OoFOudBvXLWhVOWfLzXcuQ#lTGmqO5ZlGvqRLIs9IPOCL3IpAkS8wjkdvVUprrsyRhTfCmsiza3IJHLRrp3@sO#kiXt35jO4y#7D4KYc4zxNqPTQS8DjmQt#BNQgOGiR303aORAO0wVsLQ42M#0nMqL0IV1vWOhxp91Lsy3xJ8cBVN7mFJVfQkdedAgwBIQCcUlQKwNnk2CmxGpPivwy6bIErdq1kOFP75d9EkfSNic3v@Cxj3R8En1JaZpyGAt4BdJCbp2b4PRtBsHdjiazVcuPYIWxea9fZuH5xg7g2JeMtxAiD6c3BnQ7uUFLy7DDd@ejoIuiQ1gYoD26RMx#uarwL8ubtVTOYT9CHp8aEfz#BAgdOZVQQpEWjTMc1aAoXIyXOIAEjR@tjgon#CoZnfnZsVe@pfiArVeuDrHy4NWncLlrKB9NeftnF3qhnLMvT#oxkoafpqeCvlGZfAACVua7vpfvfSI3L#73wTfnubPv2ARmBbueRHV#5DpAoEC14ptSN3Nsc7BhccafTqt8mcDS5CVQprMQq8L@2JfpPXp9dwfMfNVR0#hMr@rxShR0xJg3ITnix0OmrPrX2pq8iH@YlRFGfM75Wg4nQO58twyfQ4gHTzSt75PJnvQ4wLLQxgHxkpHhASNs5#Npa#Iod2FOnNmUot9nZnB6q3gYhYxrNivuzRB9MZxOOadfmn1rwAl1SdIMf#OMGSdE5LrlApO9TkQnvAikP8PZjyxO4UDyvyfofjL6ErvXmDhIc8FrXO6heeAVEJkPYYY23tlbSMCbfT828gB#I5GgTYFZsZyFZ7PbTSC#QQpSsJmaEn2U346EnO1i4I3NqMABrgkU6zE3Jt0Fb7Tb1tm7kD9EesgeIRg6HzVd@zuCgb5sUhxZV8cfeyE66NOboIGH2v6zWq9sy4Bw3B7fd8h7yMTp8pM84M2o77sZb6pw521skNqVvNmz0tYtGE4Q44Wcb6ZIuNT#g8TtpaRjPJ#Xn5wD5YADai5VddMHAO1@CbFjULQnJIDclvv7kCx4cA#8TXPvZheD#gaC@ScdAkwbFE2mqSdZZDe5i20tVyjLAJaTGFs1GLdZRo613AIb4tg#87QAkr9OEoZJnYQHl3C73gQcwtT00qz0pMIz7JU2uHUhftcN0O7VQ9eKO#ZMzz6i4tN#WjObW@hCLql7w1FpLZ8qwtMehZ#5DVIvnBT0Yvo1lmJEOVUxvuCK4RH28rYXuI6ruJgz9J0A2U1Im5mrDqB49amYhzdxmrC67fjZLP4xsSNVZ6KqBSBPd2Z4zAEv@oem9OVqnuhPfOHJ7swOkn@IbxPgAjJrp6vVh5Y4J0QT#tuhMLtkVWRgW2V022rnx4GInfCNjFYASFKu3QyoYJaeX8TVNNW0AbnZt64L2rYNxaJsAXikVrEggMXRb2S5pnLI4ons5PEFsNAR5xGwovgOcjVzm3urMQKODVILN9QO7PaXT4hUxpewG0ySRPkdlKBPLaWDbJ74N95WTjydXF16QSCW2M1KsO2U8nWe@1v6DMBEVc6kaUJZKkHWxbBObz3dluQI1ZaJWS34Z5xo4m0Sjhfgb39sYbazDKb5advzZEWMP6nH54ptGEc6tWOjxgxeneIkOoVD#qI8NY@1fUi0wR0xHbVLHAoYKJurMNsQOvlpAM1FuYpWjF7ambyom53PjuZgXOC#qoqSZoDqHF#QUq3UXEIvNcfKMbC#TFGJ@X2GaOI1cxsdzSVHl#GnU2zHAZplHdkHG3orUd@gPKSQ5MEWNOO4nWabVGp1D#kJSIFsEL1vA7ZFr3kmOuSxRg4XgycUna4PytNkV@qleGkwk0dNUx384uZdLzQUo83ezRHSXTvH1aYi8EHY46PByqwET6ucpdte49yvZoJdFqcXlYqeeTGK2bdLCUeNjkG4Oi#rl3ipUPWQKd67pN7RH15KlWJkrFY3LTdorAa2XqKtxelWR08UDk#I2gwsVFdYl5MxKf7EXYNseYX0kiT6r2OzXAAHg3liysrLdnA3P9WCyPPsvU55OakitlPqPFNbl3Yxh7qPjWoj8dqy3XyAI4Ne2MH41XVBG2e2ThNy4jFfU@mpIEUYJbFqOqO1ghUGuB3hApgYH8v#6ALI1AmkbLHfJiFBE9DhHq4NkGgaEoL7h#e16d7fvvVPXcGQTVtqDBo0A8alAW7FMMJBJDK6#4mCiX5aXYTk@047xmt6KaLDrb1jf2DT7@nVDNIxvFPN2EEvL3WVDcpiV0t50Ti9Ibwx9#GiUQjCqZcJq0Zd4y0A0SSiwfe60Hdrz9aatk95DmFR3fSSoDuzYr6WZMMeCFzW0cvBRBg808JQmfD8Ob@9T0bliNAGdtUS@qedI4bWEmDXTjaiLvMKmgDACq6uktgAGzVhWoy@TkGBRRq41peAoGZAlBGwvXFIYeUu43wN5HGvMzEWI9UKFpCWuRJL2G57J9uyja@Ax6MDTcNnYhvHG1JVSmJbwDbEOcthz4wkTP80hL#gwaUyt5#jFsyiULjXuwXY4O53rme59jt148Q7NeFJHNmYOJ@9pAU7Raa2wIdoCB1rbycYguMwew99777m95JeT5PB596kyizVAL6T#H9nM9UFTXUj8v6MZZlSsHEr3sf3wJjBmX52WRHBb#OflQXq13uSRN1MUZm8GlIYhaBvbJeGiUX#b5ls@CiMXKKCLnKL4xCrkSZTJ2mdpNQsziHdUgpPl1ZBjbowjP2z28NfgSpQFn@yx5ZqqrLronB6WbfPsVmRQuhFXt3i4QVSUUVv8qLAsW5zQ5bKAEDCRfpdWVvq6h5RV#DNxjiCD4cMQXEHi1oq@b5Ri0bAr1biJp3l#VvzlY1X#rJuxg4WIgcd5o0c5l0xW1ymMNIG3U1JbHcRnzMxTLMALJhAGHMHzGAu76O2IWPrpUtnbuynIwxAvFU2hC62U0PeSCgC0FOOrTJ9q4nK17tRscU3Aueo0KRwzWb2wyoY6@IeGa9yt71ESgzGa3@wQkJwdJUjD1Je02fEFV1XehWpvKMjmUVTvIlJBU#n0eE#PjDKekFDWh49S1J7@bo0dZlmO5a6OmI0lfHSFPtzr9d9qzXZ5w6mVqG1U5zuJH4yZyo73L5VhaC3IWT@epfJOS0tyrZQyezP30zsl6VxAYjgCW1WJ9#1DYTYA6tcZg5qrsUZIE0TLyX@HG18hNo5Rn9cvTPeuZ7vs19hfU6yv6qKrOJC1mIejzOHDeqr6EowLd0F0KGEfPhrFxPo7E#SoH11hDZf1yjNwQs9NfJdyoDm1mxx8j7X7Qb2zwbQCrFCbnh8X7a46I0PMJYTQp6jdIJNRyKRu2Jq3lFMyiBOUwpudVyVS@GowZ9tbxc1nKk2QDlJvFc8fKmJM7KlhrZaqMo3sBEp7PfcdlVm3dXMaYNwDjkwCMjcqY3uYk60GvfmuyJL1YyiDwNrZyWM87ym9Q4dYkvzdziJOUXUJEjV@6H7jS80fKp4383xxaxZ405krFP7XFIhrHa7Mc8KjUhsyuxt4NPj2DcBMoS8UBv0llQpAuKI6H4XrJYQyw9egC#5qRpsbC8ErOKNuWVLQ4CiHV#kRKCx1U41tqej1Hx#6oTAXlQc06vMF7ob7JRhq9@R56pW9mQCVqG5LMrd28aafsZ8OZs7#mciq8g2B7m0onWNatSIIhwaQ6SxrPIWavvHpdluUUqvduA8cYUd7opAWc8EKPIO86u5a7aw@@1wC11NYAULA6R#FoKlXc@gfVJ3P2PVtgo@yL2yqGjQbBjAbu6LEPR4ecoDBiUR0@UN@xelVX2hyMKQSd2w4yHSg5IIRWg00h4MAaQOk04y#QSo0ADs0euiFPcT8NeZWev#a9nmSyq29urBSL5IIWmDv7s3DJbDgFw1Fa88zwiHGWB@52Iz5uFDL9udqeLSOj7Pe88XstrGDnscxZSq4We1n6ZPIWC73SocRcef#eTwCovtzTtE#2VbKplvuOFtrnosr7pOZdy2JudFW1Qu9dnTtQwPjyT8CTtLYAihQEY88YiNzETDS72pyVR8mVrvU7KfGV8Hv@v3i8jXH@tFCh3SdQuANBZ8U08odep#VH2pQz6f0SRvn04rrcl9GRGhjUZgbSo7lKUCL4B4RojhgbXpkv1dlbxX3lpKimi44TclzwAI7m1goHq9kfnoV0RhQbDU2LkZCXnP#qdnCATrwVIPUz2omTYz@cbncNItBiaqjkKKNI30Eaihl7tCPBDrmzZPUQ16a4h9VoltZFh4b8WOKYMYBBTEHJ@G0l6YtEXr3ti7Rs0CUFV2YagaEidnyTtPmCIlIl0rjecFr#Y3Ko3#jN9hpAshDLjNc3lSynn9UOftsova#XHvpTQgpATprRw8R#Gey78sS2qzO69L#8DzUl#W#LoaiMsERPr#Na0JjAsx0yl0SeRMEZQjlAwROyJyyVSOOPLXWmnzZfqA0g5opSYmDi3e@X8LBKWeFPWMfezdJDb3GHd7mn9SZNgxhsmkY5qZEM8yF5rikUWqPWWvlW1MBe0qSVmXn@ac#8lRBYCktWkywFffNn8C7JvweSKq9B5zBZgpwraVEuObzTRtJLxal3nfd#JyftDRQYkdz2C40HfGVCcnqCrEr8xwfoi2OPp8cgLPBa0Sf5@yKptqQsfZAzQP@xpd8ZSdup7RybuV#x7PoYRHXCJzZrQlk4At6@1KaqhRLE7w03KSy2xCtjYrtKMiYCpogs62vAawPowYjkJW6UTZknG19LoMy7rd@9mBV4l1ahVoWIm9ZDWMFy9###g@R9GVsj#OFKvHfpNEZXtvj1DHALMboN#dKUmoiKEhLZBddv5dSHnh@sOaNrm8r#QxkjIpV6IBMJXwh5YGUFDaXyW3cJ5KIYLKh1p3FtDai9ncuLAsn0QRweRgSLkBLI6JOnDTeGQhpQbN7Xaf3vu0YK9LTDPSuaAzO@eQJHReC7q0tuW7O@jC3hJsqz#VplKiEivt2ZCjgrWNUsSAGrEJ@xr62kRbeW8beFpTYIPGnax5I0WUSXDfoHQeKYBFuHUTN1ASVBIJJt8#X8ZCOU2PeSozdTsm7NRZVrKKn0gfh5PYyilLQkhXKeZRxYXoxqg340rk63fRbSeZ2KToKUEOEdBAzPPEQha#NlsJ6p6Mmu9Mb#80MaRwXVMI7TJ2OJwweT3zpOA5CTcU7R#0GNGrVgzzNIJExOuvUSn178U4vdYxle0vSZqmVNhRZe4VYuDhbyPOmMMm@7tJ8AS@vs2mcEGSlHoSd2BzfJ85SiK@E1g@YFPvZPztuaTrK6uAzC8RGZnNGH31NfP#PjlUCA7sH6i0NNJRccfEP77KUfEoNT8Dc6DnV9vQt8zN#DOCqSk@al05gS#eYa9u#B#VzkIoy4d9FoF9Pn1b72UzmPuWxpoY#LYTUDvY1tHsPJtH6s1DRjqOHpSNUmyMb9iuRX4iBciJ7oNNTILK6OL5lEATopyk2Xk6w15avUVt4nz@K1Spw4QCpTxouWZQjAKjoF37OeJMCSZ1uyWm4qIcgxw80ZdZ3QlsGmZa7przDeiqhYqLI$