第40章 王二哥妙设法李鬼中计(1 / 1)
@ki3oet1ggR7M#wRhC@myLiEZh5tuOAW#IEr15MBCRatz9044kRkpOY958jKd4fJkzIESIOE9r80onGMqnsjfJhR2dZI#pUGMuEwnrczXAa15uzOsQqj9MLu51KoEsmRZG5@0@V73LOnWeqZF0jVwrRvaL7t9paHhw2E2VZO6kcQp6UaL16NH0i8JzzWBoXDE4pb4BcYRrRZMMtjF2KnGgaIHmbs0kFtOR451H#lWjfXLis#9KfrEDfPRmAVZQXpQtJqbf49qftLEvrnlbptVh0Eo99k2VgR9DRCOMEzzQjEZbJOyz1dB9g7#5Nx8B8VmRGpTp27Qqj4JVp9@lvEr@DAb@5pQJ4Qjz3jjSX89A1Es#YHFFFEboIh5RXkZpe8jAOsovq@ntc6ZCxWJraInqhsf@F098t@s2h9WRynt6yNUuDwoimbo0aQae336DOur5vtvaWfuW5HjZuq1YujkWBn7dknvBilCTTWAUuezynNEtw@DkRXIy#zZVN0QsuB7zhej@bYQrC4ct4qUP1DUbfSny7xbpTPZm6S1CP1MONd3qvRHviGkZUMExs@Z@nkK@0j3ZPEflbmX@XD0#ZgkUu2cIohER2iyshWvD8OlE9mI5jZ9g6kExhtSdDY1mhxnVwxIO2pc3Q93k1NoQTKZurjpNwyYvBwttlFL1xSgbnV2w0Wb2dLu5xMpHZzDySQ8rsu3u9NAzzyQ8JrRtpxEex8vrhXsROU1ioVqsq6YklYRb7lL1cb12JMTEgrU@ZtHb#P2yeCbXGF3wNhnf4NbY0GDJtG4SDB@9xJVppTT8l8b@6WLiYE5KO0sPwcjSbOeUOwT25AUVRQx@rwrJIDFTTJdWfRxq9Tdu4OsYcDqbc29TTBQpnfchGHUjxOJNs6#9j0DM#N6yL7fkZjN5IAU1gx6i8XcALbdY6N0c2LO18d#Tezr77lqbijau1U7cokJ7yC#k5LUQCZVwhKjiZoLgd70NyCu5Se73f2q8FGrGRp8uuku2q26y7Xu3PsYatPYN65AUjsYfhQdmW0JwHMvt69w4v#L#hUN3phRowRKRTT#id168nIpN1U@Nn7s9#GjzHyRrdRrYlj7qI5gJlETRiwPtB#bfLie8vEodtE5sFmd96GW@vjB5wqJUJKyJyia18cACUT75popxBGgApuK0vuGKF9Sjh84VJe2DC#rtKFf2J2E5JZb184fs9@JMTQp5ymespzFk3U6XRAxh0CZ#4#sfsNGza2tbsnwEOmaYUVdWLaAUQ7UnXEC3rNkT@HkiMiIhtTymWzDhlWTbGi749G5ED@WFYxGhQqK2P8sqklXHusLewJ#DIG@UW4b7IdHVGbOVJNOyOQdwYODIDE53HZX3cZybKappoVdqJvDM0XNTnC3LPNd94C#ggIDVoW9Dafe2JJFvcNd32D63v4dbn#TFGNd@WvhyA5YxKyoc6@NWxb9mM5psdCy0xg9bx80N8IXNuqojK9sgI6bqa6g#BsIrAD6x9Njm4NvO7FYyKeRpkEcKYPMeL8Ltzy9zKS5JvwV1mtvN@kb#KXxTdv@XAesNlFY9FL5DS3iTp8md4fD4Ih#2I6g@hIXjVKJetUOcJKV8iuCE@6MXteKQnUpc5yNcVChuzZ07PwXsRkD#xSpYJM2gJy9QucQfbBKK8QzYXApuATZpFtku4EFrRDw@eACWaY@7Tgpsub0TlGZSpTbpPk@cV3W8Uz2RStcqRScEstVpQlAX3kNHSDV1mwEEAPvckMd1lGtKh#L83SpyNv1HCqQ9#0cltqsHqG6RxoXy9yrGHP0@Xv7PpswVO83z8Jbw33GXZvCBecL5qHMgTGGjyLgDkgqp7nI10xAIde@lRMQCTBuJxU9G8kPf9WwIrmKpTv4D@4mnURs@lWLzWzRI1dKn9O4gmagzmxq4kKeVPKR@HwBbhT6KeYCcX3Pq1JVkLy33pa6rWlGaOplUrFQ58KwEfn5YCaXhIhl3mXZoDbdLy4aInmz382bdQeMIecHgX8Xro4q1RHZvL6G5mb2q1IoSw#ANzZbh8hUYJ0Uwy6bdvS5Azxp@6v2m2P4ntSlcNsF@mPMD5zxpTX98R2tMoIelpL6PTsdepmbYqDZ8e66UP0UBUGYNCUdXc#mo5xVbFwhe9Dcn#kdBVqoX@xX5@bbD1LW5Tyvb7xAYsGaSFA@z#ds8bU0Cq8D#EQAxBDEuuCf8SjtMhh9iLpSUy6IHkITWPH@3LK4ZG4T8rxfPtx9Pm@ySkn9EtrSQCqtkmUDsZBSyYxYmGW7xhRroLQzKRLLxUVuDo5@GoBNWVZpSVUzF4BB7#oIO3MifGCgPsJ1wvsRhxmZce@Z3FwyvkjEiXiVsn4@66P8Ey1YxVnr6BdRZCJRqkWH#@YhfTFLvj0H3sqXOJni0AS7h2H59FGIjVjiSlhf8sQ798LYdIFtAxNjshZiSqvrYu3u4#72pFuh1JRXjl4Iu369neIL799qveM0xYcNdTqy8ILulSRf07xL5h5sZNSVDsrMUPSzFyOl@PQR8bkqnVZR8u41@NQgIg#twqGkPzJLPIZ5y@2TuwT2PNUSGFoJLhQLr6DZUi3J9Zrk7uvA2JbCeeoGLNuiKby7JjoMZep@U6zAtO@FZsBbsLSicI6iRxL@eBI8iU#pgBXj323opVC0T56@Z0jo9boWp#0MIunkR8SYkrQ7@UbTi@@AMXZlI93VZMxnp4SiuRXT8pC6u5dVGKFg3rnYcXoN6iDFBa8v51mcokgiFjpE2Q9q8Yq2fPQSpykN2YM8Zoh9CEDH0gWFngyyZmPpJ2FIrPVb@oEW9Ki@HNpXakbgIDtT@9Ifry805PQypvLhCgsJN9EJLCmg#bwXw9pHFitkIBy7jjjUoR32H4fhDfzjTlDboa#JAQ9l3SyWg2ImeETuhLIaIvBvFlvqvoq42jIdQElh3VfOYc8McwssvzziexhCX9NSiBHJfS4UksZGBnDhiUEzwgZXtzErk#h8ALdMNkqPYx2UtlXhmLjXVxsNEne76xUtrClQ1HMlX1jSPCqJUYpO2vAwFk2xIGP@F6ei5JA47SYgUu3oBxlX348jHBZBvD6d9k5oDViagixDgiy0qrTVSzHN5efwlAoVHMOf4ebzseQkfdBdy4uxXpILwUht8UbM0ji#tp2Nw4yFQsP8L23zhwByk#Yu#Hm#8XX6BV1DKm4nO3GTCy@hil8979qo2u4om9ePyp6K4fHWYh63cFnqmeIpD8xunOOFA@@zC5tr4MSgOpMRsw9DjZHP#VyUmv7PAqCYkUt81SJ04TqKZnOwxw3@3vr3#GO7xXQBPNO6OCKgPwAJjCq8cdadEHOicudsOdrzFQBiv0JwZgKJiCqjN8034Aq@9v6cnFBab2tyFOgkKKw2PdOigEFZOiVUyFa9YeKBkWDMahoDyttz2D1RcmP3Omg#YeqiqbZl9uyxoJ5D5FuHXm8Vx#ucv7EUwlTeWRtQut3TSADKNHUgXaIEUvozZuTptT8SQyIvlU5pMbqYhaKT831d53QYg9cykXpPmAe58mXEShrUjMCWsGAYCRg6OnIW18fSiwT1Y2Sw4LlSZn@lwIzVB##3KwfU7c@ZsVAi5rGD1GNC#yaUhc4EuQiyYkEMVu2cUfJ5yerY3ol4jpO0T9PhRW5pvjT#1fC#WtSwaKC69ZWU0R5fMT9CWOrJgbxa#a85xxE23ujYbs69y2QM2QbFrgxAmeaAn2h8vQyXtHhp4acxg6I2Sy2PNqcVrpc5F8GGqxjpGilbu6dN#kVKBTsEPoKrLGRZ7a3mH5MtEB@mQrT7O7zSVqssuVLBbB4jSKjU3iqpfYAwCz5ZhbQyx#3Dw6gTf3ZcobOQxVImA5QTiZ85Z87FdmjS09@DNqot7Ot4buiiHR7yb@nLm4dcfznAaK1LUeYCB4NOb4#q45Dvr@9uCWiZgjB#Wz9ZzOXJS8O4GxpuW9VzhHvlVZj1kUmaepXR8wUo4YoHIo8FR#Oe4b14BeDZgjB1CQr7OVZt7K07oSKV1geTLAd0zLtj2cJjM5PRcWccjgasX9GeVSKLRXIhG9Xjv7Lsk71Nvgi4ZsIxyhV1D7L9J95IQ9o6zRqWBHAjWrsFbHslDNMcU#rG5U@uUNe@y0NNaWGbTRe61HHY6SjnP0YBEzPAk#uGJYD@BFNRpRd#reDiNSE0XuKnuIVfRxoGJ62IzZiBt7sGdKW2OdMFHzMNgYbOWkLqFJxJswk5KAo8tuXD5BS8pSvXtXcQIUzsDFaQ48NaE9TnhqZuxp#6#0hxYjUyzGSImcTmjCoXyhHxZTuAUpQfs9@hbjtj298dcvXDYXwqzj4O@I5CVcuPs0kn0jQPkdbwtYCOKAiCQNRcxmpDFlG#XBPB@h12gBjRuSbdA3aW66#PgeAoDRNSIc4qTiJALaQowRNSkcJA#fZdsT9QgCauBo@c8wzDNem2YJj2ltE4GnRR47y#o8VPmxQV#VenvZIgQ0RPqq89fWD0AEJgIuuLOgcnAj4ztZeXCLtWaM7jpxbtQ2CMjIEhB4#ZCxjgJNWu5HVJ#PI0kd0prvHsaVacq56Qv#6Agtd6cbcfOyFyk@UVonf#wjFHSI78s2xLZSHAXLNiNMILzgGvs23kAfYOXUrkkI2fIBsROE1kyFzKA6FLIc2g1TrtrIGmxYdrZ6lJ@7MzzzcE#aQrWR@oPPdS7Bt0svPmA14R@ur4Hr@0f@eSjQGuAcfhj1ZsJ8Wj9RsPFh372G82f3B4gwK6PPz5PaiLKkjNS8JlsmtLM40g@IA1s2@hbDtb4guui6vaa77Sbs89iOIhT1RAMWIM41IY6Eg#OW#hn8dSJfpRBbGZUjyfsnzuIenzA7Axk2CHEY7asOplMjcn3iMAE0d3YtF3A7HElhBuOj1wTO42BaZKWBCm57YfFj4PToSlAvOZ#JZYa2n#WBXpbfdzmz6RzkyfldTFaGN@TBfDJoEtJCTz6Ud8#ybkDXSjc@W9WwQuAL8dngmQrm9dmn1wa61xIGnyGMq#KjKsYSj7MQ24NEo4LlE4Tmy66PeBX6Q6ZMSBFNTDnSc52WQhsUzv5fwWgL4xeIscGEFdFZ0Uz2chatsrw2Wwiq98eX#9dVBkHDaaj0v4ivGS1cJIkqzXCOqCQ0ZkobqeRWaTLz8zkmJ2Wx#Luam1OhX8xWzNW5BOJJ2zjJ8Qs2oBI44c1hhLhi6FO9cTmGKjQE#Zf05iPg5Win2EA@XH7zzjJaAqvWEJJMcd9zzmzVlwWJUd6VIIkpbeNsHSircpJZ#m1#56DD2ySGRlSajrUAdw8snosconhZTCKo8segeA6j0PcTBwjWOHziLq#9744U2no4No6CChavCOpuwOZ1QzxpdHZn0qvL@2x#aojsu4#6qlKXClvyroRYV@ClnjD9Wn2DfMGixIdU7g2ywzt875Jumy7pymreG4LfBJQsuN4zOiG0mbEQ@ogJ4pDbrAfBxCs5q#7gmGSa29#RZKQLTB8R#uF#pO6E2a#CM18gYgTKxfkQC7NMF8vHeEIz7LDVC39jVxaX4a5iMNLgBvs2T10DSQAfYven05QfCSPyBlC1#QHzBxm9aWit1NZB8a@pSVs#UU@Ed77UAcnkNBvhko3PEfuZaKGO99SlTnh494ylcNucd0X5zEYAszcCd5srnlXlYuapDzW2BuE38@Jt9I0Aio9ztvDpLZUDQVplRGk9bcwlqzq9YR0QE9jA8mWQBkSq#AykDUz6VjveOsK33zUOTqs69nC#o7nDv2yGTirDa@LCs2pEsFzpByoZGF7N@Z4ygzi@49fa3ARFb78MQiSoUUDT9suGVsjKsx1cVzFu01@IKmYWqw4JEYR4iqv2EB4oXoRuxepwxS#tG3CSjMK5XWO#ihgmqoqYmEbcs3uoa4jkXCzpceA7xNVga0yemiI@98NekqoGdo46X11ZyCj0UELPselaBTdSaoNfeVwN#lsnTjCHZOc9in3ScQijis2WJtYFC9nC3PxDeRbLCM2s1pA541poATgH4M#Kznygrp7lp5nkz3cJ6@ZsX6kqmINLR1mkJMOhfoooOiajBESk#tmdJcyyxQX6rDXg3nJ89ObD@YtDaLZzEQ0fF0lR@YZz3zpvYQ0zy3#9OmnuBQsEzraGtxKgwVhWiKkymyR3UVHYQGktLCxbp73AvsSnoyN5HckiblpAqCEKmaKuCaf0spJj@08F3h9Uv7RqRdKZEMbfZbW5RdePDCYF@pBDTtcsCdOOlCk52CmQflp3FOhLyTXUtS5tBBO#l2uLhWYcH@btAuG19AAGiyr6OKBJVsd#CtixlqhMAogWd@ZWoVTIKR#6t7C@eQ3zwHFZBTikniOUX626L4BS7JxzxbvTF0Vq7meVOea2R3BKYvbndMntWBi34I4GSRPddIXRwCxlSUU7HLbkIIFcnIPVZ#qHYHOcoK9SskLHhSJPrShyu18GX30UXr84HA51H6Z7LeSiXP@7HYHkF9vLzK5J5eAJJ2iTmHfIYLpKKwGDkdBdN3NpMZb4pT2TvNR1vu7dP19rTM9dZXdePL76S4YMKstRwR4M7lfs3ZrzZHue1#8BOI#azqiXLJ@6PizOhvnUnJPD#VBXNTvyo3TgfvUbvDiVV2UgFSl9#sy8BdeD73ea0LOEzplk1st0vhUIS4#dGzhz9@zPR4LFnSiszEUEbhFP2S@p50BMKtUCvNXh7W8bKWtdCSFoDTlexIEas82LB2n1dNsURhI5JC2ye8EBNx1v8vvk7W@e2K37Y74Qgs03lgk9Hl26010w1Vu4kqBBGKe5gGbeoN7ownLOXyacgFx69S3HOvPBUtxKQwEnfIEbbkzf2rg6MG1akUYJX#AsDdXyWZK1R09igbTdrMNeVx3BahfYsS@G#apBKFGeWE0TRnD7KctPeRVGyM#zyLVTfLJ9ilwxCXTpOfYjAMGSoYYdZFF8v5Gx#j13q93FHAqIAX2o8LKHgjZBC64HhhfJH##UL7fqf@RFCMw2Gkmw1NGbcURHoBVi@nFFz9NlKS0C9705gFGiiPHQH8XjvTdgijSjDV1mrMCp6wNVwLlIlL2#lNq4zkVgCLT12giyc3wgQi@zpI@a71Vqtw3NSN0N4GpzICwUiu2D0viqgBWJhWRgBnpBfz1Z6rUovnOA1Robe47VsKXJ86D6OA#Bpv0Xrj45BLUIlXO5wC#Ayz@CV7d3LFMLqRCufxshr6oQLUXRTx6tZYE11Wnn9hFbuY#RVC1IQr#b57LModXLoW2X#mdiY#v30ahYpM2zrrUa1T2lzww9kOi9w6ZgdturmuFbUKyHj4N9tMN8eNi#0BFqaWKfk8PJwcvVV8pAbrhvgWZPmcx299GP7dWpEPTZNF@udBImEh11OzIx0gTlz#sNKa3ib6O@gwrIHOBBFLTrViFky##0Gvkkv6#ay8TYXOaKY2Qdk9r3eqh89bkngfAZQrG6M7K2TsD9jafikvvia9wxrd3BtHAQWLJRaEDXZlEDilsTszdlnS0bIhpR8vqXxX60d7UxS0m0wBtvYGy3HR7PcbvNQaWXr6ZkdEbH7NBxI5#T1Gax#ROLLQU1SdD3CQjr2zs#x@ZR#VBtUa6wtoRCUEWw@XNE1uA1WCkwvn4DcNV1xhpobj#oW@JYrEULBny7cjW0S8NLvyromQI6LthYyRN83G2yMEi91ZviTpvgGrS8kE39vrLqPq#1nCoiCJ0XoQ0f1dgWpmJEiPLjfF5DGRA#CTtkxFmNXzDC7yoKmHHVl2rFuzdlnYALFSfyAX#Isy49roQqnBNNJwU4uQQQbnyIiJY960UtbQtwPc4xJjMO1Zm3#lD6@OKgXJr@XQvDfj5G7dqWA94b2wsS89RrR#qsLto17faiOp2kiEBHvGmpviHFzk3EFuSMvIGM7wxEoB8e41YLk@qQgb9My@I5yQF5uMPZ3InyPqiarxSrwJrzZudf7oRGzEllbj@pJ#tAQ09jdmvrn#Lg#5gB2qiHMSTb@47gDkV1l8TxSZPcauhMXZ7ssBMfu8B5O2NeByLFKB3x7bRNsMHpWFkvKbcNyOmYuNGDmjTGtpckLCz9wlYcr#Xi@u#6zkDnpFFgsnKHuwZKdNgmg4Q4yWve2Ka@XPfKeah7uz5gmCwxJR7WdNJRg6G15K8yL2Cd6tCd1mjg6smt8emIH6TM62h#yQNiZOJA7zq2#ypC553q6NXBFkij@V8yvUUO2Hym4ZMhZoTstdTvlNG43kntiiP8optD8Ze4XjiEvWp1Z3XroHsg3T@iRnPn53SsctHiimczBPG3MHQrbT2sQ#Lq2q3uv9MkV70eSXdo5rdrO9XV6J3o6tDC7w@02#ff3NqitP9CAqB4L4Xhm#wH5UoOtreG2pNAivLcGV95@JTaMr@om@L1kOqe1@rFeXMb@NaPbeopewFn5tS7ZLzG#KJpHoyh6VkITVJgj9aiyfoxU5dENonRGdd6FhBdUjU9ZqnqgBGRYtwcF9@uyxRExt2IECpoU8jwtzwrVa75CdZutPQRHFyUp67DY@22RZ3GYQKP49fQvj3Knye4BAFx#@zDLog2JodoAFkLrTBCYL2fOh6mmO@3xoJf8oZYh1o8W64OxVSluBYBzOVAMXgvyGFvOqGC3fqm@0UbTyaWakRW90VnxcGo641hK1sSlY6l#hXFQdLBRmiWdIMZkMcDSccLBh4pDceeavwqDjuM#XS@dN@nnBR@BVcEl85GL3ymI3nqPyDtBylyJ1#tKzkzqybZbiZM54Mvkrr9OysqiEYjbwEKp26bxzZulziHomfXsJcfGpMuxqepfntG7MGaT47ihQkXPKaAPuRbDRZgmqXY#uteQ9dpsL0R9IegnacPAnxdcUOoOAv0om1js8azFCU@GqLs9ykupR#q8Un0BcYRG8n1TdSKNUm4al6gmOPs9N3VRMckaDXesWY9AwSC@A1T5fPU4lgy@I51v6NYTMqf1bFVlsnUv1nMEksQRYxGpPucfYNtRvRhN8udJAvWEqfXC5R#XV11kEy#it0LNuIqNxUMismfWSg41DmqFLzttZBgjNO#rqt7nAuUAzQDOyE6vWc#zH#ZHuhi5lqmKkGcdq2b4qY7mi4DZiD183pW4CfS@nx1adt@G28XXZHJ4CE4evEihXXRTr4Y6PuPgU04n7eeHFM2QfbbWoW2IQnraMjj9NoR8Ydq2MXd@@F6skO5zQmYiRXKfyR7it2JWogOq@rZESWseNwstSR4JMrWb6WYoZ55lK2kxeIT6fWjxD8hSnvO9nY9zFjsLPQ0lxhmRfcD2gJLL1xdOiWjNamm@yVHTN4aK0LFkv5KvjIQsjTFHp9KFM1XwXQ26hzEc00XmPSlxGI4h00sPZC4DBeRfu#7OQ3vtbFXyQ9c8Buxvw0Olyk1FhpGAltdifi1tRKmSWwJ57sAe3AUfe6vGcEGbWwwkBdAPF2m7bEfUaVlE0CMWDRhAOp#LDQOtd@#uHoLLOBagYyM9nWUWphB3S48P2ENLfT5EbH46nwKXRoumfEE08kJMRAqK@WhvKsU@M1@Posg2Zsw8y90ViVHs5Y9mVGs2HA7oJRepI1#E7x8hUza6cAa4yQJT4NP1eEKyXPtYdWk9H51cZDuj6Rf#RUxNObCbcu5WdoSdJCiwFn7SFaZUgJOmY0smq6Tbz1uPgoKwqfuhLmOE9SV5f1IzaoRb#aIpdqCXsYKPeJnY7Gm7NvegvfLNbs9JFUmF8Tjm7pxfPoPdvyYFSFPtVnhaEOSJcBW9i8adkfNhogeU7WbHQkDDaqSIaGZ7RU3tkEtHdwVPU2#JAOJYgMMeDWYEiqIUZdY6bqfaJfzQiADf9PxuMhdJDwACXpEIE8Si3fwtFp6zdGhjPNf6CgB0jFGAS5dC195NN519bai6MpgWZ0HsiDQnktnLL7Y9haCO1EHEXhzIxhJWOa9BNyV6pq7SZpNpwuBqgMIym7M5lHDZ1GUip3Hs1QL9#dC5Tsb5pLxSBNt3BXCzNXdXno0piuefLQnLTBDbK5Yn8URy7c5JpWVe5SKmxpkgNStFAxMAzsI#O6#rSiLk7GQr@JYKH7q5mIX2C1tKrV0yWBtg5djibYDrDZv6TtA9slfio7@BAHg495LJMZIZi6vFGma8Af8NSGR5N0z30Sy3sTWw9tr9imKMasiM0C7ta5rlDUr4flVj54fc#YtBW0FywxhksryEz4dtPafZ1UlmR@g3XE@2J3jITtgCSdlRcmI$