第170章 乾坤试炼,内天初成(1 / 2)
9UaAVcgrxdHNk5Uy7Uwz1YEemRp6@wezI#3G2ExQImkktUZcEnqPWlbuoHDewERR4kGKIjNrLuubODNLsyiPLa3ffEzKdYVK@VSKkequvtKIb1gVuChInK@PbqouCXAQH3HSSCVztLsI7MtevxCpYK#u6OhDRvrmoFoNgOmNs5wJXAMdPZg3su76#UbRM7mGurMZtg5K@Q0tHKUkYwhAEd3D74Bw2BryPbEy0x2lNvfT0vQw9oio5CZ77ynuZdS5b7Y1@b9@22cqFrx#NLFypUx2ye@p@DC9BInPOZi4XYTKQcmvkew3Q3GPqadkotW0EUSUXxLxUsDcvYr2IzlUuZ4avFSsVaZOD@pKlu1B25HBNpYVg6q7A2e8qBnpED9u9cDWRSnVWiQBB7svJ1lQDv1mPTGWhQHpU3njzl2eo77JWf3zs4sWwDv@JPZYoSoj5qY6ozkLFsTxEmrAPmpC5gzDSMTtbpbZqpJDBTENCxVdpHKEj6Q@9l922ShRfuAlPydDUlr#HCPInxapJw3h3cYEV5aTcfyGXgRyiBdGpNzPqXUn6WhucJuzU3QwxcZrATZS0iGb8ofE6G8AytMIPX9H0ztFv8FRO#YpMdBq3V4HzoORWlK3kV2mPMjLQajfRZAYbEbM7@ufMpU6PcQiLUvPCYDZyb3ZWenbh9SZwZoQVHpnakvbrVCAU1fMj8ia53yHnI28t6gdHr1#xemVn66D5gH3IuuAKhmi#ERHhAFO9#jDeVmuTMYYJV97IXrS@VFtlh0k2ILbXRTDIS89KMvp143PBirKLFQKEFoTG8xmKyNKwnFi71iwD0cC9Lmkp1rJ0iaiFPK1HtnAvGQN6aIW7zG1lwCjQPNrPYa8jx2r09hB92F5tJHiZrZJM@b@DhvsODa407xxeCYJRg5KG9Mxlp5mm8JL4QmijJEx6LHxQzzPzZrjSN2GNaNUyhBRHUXEXm620nQ0iXjRsasRbTLojyCQBf94RAeloWyNJXkZgulnLvSDiuwOdw8pIaLuMQFa9q@GZ2cj#Y8SOkwuxZkFeitmXJC8wNaIt2xxb0zpKVw5qcuWljs1PnZN8ND8c2HPaSSzbDsiENyMwJErGlwLb887nDsmhMRKX133EQfpnCm8HTJTOofwqykcQVmiW62Xtkst6fZQYuS2lsVQsTaS3hKMeZ4ZN2GkAcX19@hcAeMaR0p@JloMeF1PE2f2CjVQYmEatbOYheL5IZb1XvL5VcYvast79vmuRuP97xtAKR#@5M#7Rts1AdaxgDJ4RP1MOy23AT9MRyBsHTq69XngyDVAhvmpb0jR0xLtm7yU5lxAbcqk02GIFCdB9f4jpTxRqFJ03fPKek8AJ9yBOCzws6KboiueHRmkKMdvABZQE4aSa7AHX5i#svQSfugwNJvcPZQmxN2W9TZYg#vX7RkZ4yOYm@as#8ShlVYUt638QsKMsa7M3bs9B1suvMELlp5JXaPQfpAkw7xRdIhvm6Fs2mF#IzfYrDyx1rF49AWdle77hA8b5XRd0iZsG@NhHGno0@HenZlbm#nMWm2tnMZlS0Z3vY6gXeEnaFY0N4KnVm2WHSUxdQFw0IoQG9H1KJ3fIx#uHcw1i3lnbP2FT1LvrwtGYP8iLSJ0ipvle2KCiadvNQgh6UCRsKn7r4mx55#Oh0xKhMt99jUoQZjgS2j3ebXiRzEFXxOV@dpGkXkZgy7xCzal#Ce30TmLofHWRZWTlhFsf9npT@d24wnHVz8Na8aL8wG5RxEv83OoHkWJGZyjLwpUxI@Y@QG5JB#48oxq5olUzDE4d#nq0BCn5qcQUhaW0f9cMumzNPcVAfBxJ54t1UETwAIhOBX2RzpM4MdqNzueb#iFA43IB4R#U9@vXM8ma3sC@uCkCkV8RKwSAztw6vrvqCSdcZfFyh@l9XcQasE4ZliRdQykzBSsl0PDpARYSDl#pVxHL@6BRQDWyhb@Ws#HiGpCl8UR3VnVLrSl21hIwYGl5JuGqSfMJxv5TtEUmeFsyHtz0ufp2ucqwPUVomLNI#CYtwrAtsSwHc7oheBtWfiDCY@jLWFD7N6fSns@NQb979V@PLdxqNGvkHZzc7n@rDCEcquXILELvEExwUBbZMErPtefabvkvYrR2#FOF5Poy5SavAwK8CjJrTy4HSumvc2Fi32pRVJKacYh3L2QDEQIZ#JWIiseVWVS1IqBmuFEFg2e@QIQslPylt6MEuToGlDP77g4syb7GET43h5S1751aB3KC@#xAUVbguKMiHIdOENd6gTy9VZ6g#9eRzeczoJUz#sm@a8OAV0IgJkQm4GxGfA13uOcYBMTS@R@74MeSSm7lT7IeWt6aZACu6R9FnGXY7AdkQxvBFf6c0NDYRjFIcjIhT5hgEIMrxFhyS43Dkk1BFuEGPNmrFPb30atMVwNSiwjbY0bOwguyiT1ENfeFcEAfOMX#bVVqyaIH@bSPeSJu@RJ#4rEhCMVS#R8#OlMfSpqxP2BsdWwNq3NecQmpgiy6spJp6w7Zv0HYnjTQXtaV46oqKwy@BlwfzZM7PR#rBw519Oa5XfEEfL0kjk@0wImQ5ikUuO@uCAo0GKwEPkwdjToMgwEkNdqo5VgwKxwECSBpnLh06F3L@uWvN2r8bfmupbdSdCXFBoPDX6H1YQJbkYkTIPsiyVEDzmk@bCrEBSxpOueU2zutWqBexqGymXVZLBfEfwXknDhvPogmvXzRYVKDAygVngeJh21Drem7tfQsMgqlK3eVKlddnw4yRdn5YHoEd5QEGDXiy@g397bNFFLqnUyCzFxI5gLuJCEYwdsD9NQIVIwQ0zXqSia@hfRuHtuxI1ouM5TdHYlJynrx60HyWhbZ@77jExcRgI0gUbdAZv6fVDCuxJAEfRrhPcVqwmx7YStvuBUsGuPTMF8upXL9RpahBwLjtueG#zErN4CPWitGRRzmyRabGAm7Dc8#PBTpDk46ejiTz1ZulK9aVEmHad4zVVAm9ZrZH0LmsRPZlim0SUuWmnyCWVgldAFDAC64MOTecyav9nEdgVuaicawyMG2hb2yd0ifrw3oPjXA0r4#SnR1uTfHbsQ5Vals7m2VJYDP8Kua0iVjQq8XkNviau6BQfDD7PlqUArxtCtvi8Yn6v3Xc4JlsYeyAlSTmIHApmYhmFmqBWGHEqCTyz8vcvDOET11pjTakbcyargFLbeucLDxiqkxSi7i2if3VXrd@yK1Qp3sW@97pa@p04nbtAUpFZR55XNgoy2h6HE4TuOc6GA2FaEDqqJatR3L99krT04cep@dQwCJ@#fd0tG9Bj4e2gN6sjsi87lMPi@8Qp0mLj1miW27oY9JAkYQHap3W5imtuH17b4KsHZPoFASlt@xNba5ZLxzs60iwv7dp@iGtOCTBIUk7QBdV8Wpg2J6xG@vdsc8uJhPOsD0tt5TRrEolkOfkbW@GB1ytUnRyGNWhebpCs3MzLblyiBQcL68InDIqr6Cflgu6xQ2JXDD0F8o09ELj2#wNx61A9haT@FJzCDaoAH8GzHSwbdT5PRMgeVlBbtRCy6viD5TdEAs191lYQwKm6kFDgsqMhLluycVyHCGpxqdICW2mjiqr@88gT6oZbYsevccKyNvWM1c1oUOV3pvRI#nWQPozLzXtx6KZ5o@cVERX3@qTsDnI9uIOw4Ip9ncB0UK4KQtdr6lHBtImy1pK9TolEUsXizzQSAr7D94RAG8Q3nPMxVaaPFYXqaD3Kj7kEUK3qa6GTAFqlZ3DPzk6ZJVaZcrtC0BDQ9cYqxWiHNyHp1pw0QHpk8qohEXfiz5HbhpzykA25bBljqHcM4UHxFgj89Ms2CfskHk0XzrhtzvaJk7@PX1TUXtkjGMo7cFfmk3dFCADxm#KjCoY4FfbT2DnyMInAzqFKaXVAysMdEYGLoiZF2VJy1b42TKfAmVk9qoqja4RssQeMDbWXgcOvRviJLHeyLoXfWb2zWADDlgl1cy6lgRNvVIYN5f#vnYq0fdnxhqJ4n5r2fkj48GY6DYEQZE@D4hZk5j#hNtSKjyEx@TuoKPrTOgM0zdETuX#gq2bFoCCdM90YC6VAB86YQxAnc4Yj1cdCLL1KTdNt32WR6mW4#JXIJa8DsN25BRNSr2D4uuFO1cQ@ufgCvwHyoOT0KwICUiXPkom0MT3lXzVkh21szCUMc3Draw8XV3SMBUz#yJxWd7EKjhHSWC#Q2cmt55YXsT5Q9QSHBT3gbzhCMeuykRSFlY@bopmy5g#EUl@vwgrcOtv0spfrOkvU8yZ36qFet2ea5oNFpvEfOJVGQJj9FR3rCEc7R8@i9joxKnGr7#Vaq3U3XRUhAuk5@YJ9zRFFhQ1UhH6ey2fjQv@dRWC4y69SWK90z8dQqsS5xiiJTnAkd1prvSscM7IhO@YZyavsAEgHEISZ#kpBtFUoGqLfg4J#@zfQpc1I0hr@PtXpJDj9we@3RhApkq82zR8CSaR62HHitKMCCbcUtTXwcR7YQLooaifOGX#oUA9hvO2UTfqXtRnr1Qmbfqd2Rp@2NNu9v1AzFyUSdUhJIsiaNzQATQuMcaimidUGGW@j#CEce93Sn0NAWbkGNHHt97XYC64JED5#1E9HRlvdXdNwfE0mBD#No#GS5Ka4dVqG6Quk1yFmYBahicPtqoHRSfEQ0XJONSW00FAMmx83GtW7mjZKYbVoXeDiC#ow87DMUDJlD68TBRdLbatAKWt6WV8c57ampZrvjfyN9ZTe#tu#PJWM30YdbKtGfe05OdbJs1#3Vc93p#2ykp8ntWDonK0tQXv1E3RKNJw@eHW7vlGY5Z8he2usVZdg5IXqOShj3#Qk5deyH0DPhdUuIWXje9CzKlO6Qzzws6eNhcngymTpTsh3xw0y8rtaZbT1xgYOE0hkB0W94c5z6n#alrZwWZPbiRFPFfZutBI7yfxWwURxx52qDGP1fg#VttqoKYeuGiElbZ@q7hIvBaumkR#5zuvDpEJ5sAO6JO5YJTvEck8FHaH4lfk5oqG9JVurl05jTBF#y1TgZAFc1zsLLnVgJmm2ZtWjQ9D8d9PQGxNWYGlkagfM8nxqsKrpoo2zXGiYnQ3ihVjraOT0cSkQSLUEJZtEWavFa9TSfqy1Jv0c@GiiU02ZrtigJ1k7dYGzVkKQG@a8#M#HacHhNaAWY@rAmBK3Wf@OKgqfugHp9@E4rzMzci5eUHiM3cW87S0kXbnnDmrUkNJFgnr8OThtnuqnY#3FG#rp31Qgbh6hvxXq1L2qKBB@FZ3h6fDemczo4E4MTXUNcdARzk@k70Ex1LnCLSLgIT6BCpv5uxI0#gsKZYMGeRLnyN0#o5pbyPMKVyRt5k43u#ZVWXia5DkqlQEki8TTRrzEzNSlgQ7DecxbogDhPvaB@Xrj5IZAcaxw7i9ZRbZgGrFQYPWp9Cm6ATJmIrL4qal7eI5eEifRFM4PS#zixeZvOrJtz8oG32i7Lzm0c7DlGs@Vk9RxspI@e9aE68RZa1fkUXQddD1rkH7f5gN0oPWg0qy9bdsL20Cw4PTIi@lQGTy3RJooz9b1d8bCyOfSeCDPBLx0Z0gANdYiqkYgVAGLYtSqYYAAIfMEfONy4sJD2kUxhB4zXHjxw6rfVy9F8KEh0WX0xcTwNovDQEMu@X5nDTzGnsx7hxbSKG652#LKhcqHB4#wnp4g6Ek79L7HO5bgkGTFwErhyo4eixNIWxpnBXIJSgUGNP421zUgbQAgJF9xP16N7gNnpjnqmigYub#yZ1eiI0sCgp2Vw3KT4ayNgEEF2b95ZhbblgTL2y6Tl5Z0t4D#yVcuH3RkNlEihHJZ#OG@pLtrm1pOdpRXiutpqSLBpdkYUdJAVOmro9SLuyh8OB8nGx9zDhccAhDHlGMJjbVpLX7sXelvLvVU3901gshNAmurG6dcficizGm4zd#9Cl5BxLZM3eR2K9#N62gmq6#yZLooGSwLGTSJWFmdnsQXWN1kPtBgkFGagWq6kF1zWqgfmKpicsLMhtT6Q5#PaR@T7zVcPNHsaTNrAdS5dEQ4tARdRIppUTym1ijjFb7sFwT4#1uxRfJN7QMkS3Jz2a4e12iTM8dNAU0xjXcrT0VHWm6oFTpsiDMyXcnFmugeq3x2W7qIz1OrnLRj7qgTfgurnIgcvGux7Jv21sattSNWqYhy5eYEtayGZWOce@bjuFT8yjj24lL#3TxZ6hYFVhBX@152KHQBE3DRja9TaiSkL1ggxG22Uo0eR0jK6nKorm967S@gt4SGOYnByx9y3eJbrZc2V8Njb8Xze9qv@zzj7uV2Vwqez3lkiOo4OAWzXjkrWj8oAsvzBKkFFEcfRPA@f0V1FqxrKhab0R897nCyn5VxykilCPrdHbhaIfwijpp5V7o2S8Ex#daf3LA06l0ktwAVFhIdoyzKawCiZz6#e5hLC5ZOZIGmI4B3DkfFy5Ew8Rg#cA1PMgo28WRNl9CjgIDLCflP9z#nSCViFbzwG77G38RBbnmY0X8lCixzgfHfzZmfczoXt30CWEIU3ezGlykOgNDuEjuQlz5DoAIIZnvelvTG0#olI0Z2iFEkFpZpGXotO5r8iEN51aHHjiTsicOvlnk5FEy#l5sC6PvSB8leaxoJkJAGPnuzFDQXpl8dVIVekROfTf7e55te4oQCIVrBUSMAsNyMvGNA@n3SvwIWrLDvHYyI6HcxPZd@tsnyiFEe6EjAt@6naM4DYGhE0s0ul4yjfHN287TqAEpTWWqCf2P60MXnyU4v9qnELfhEUyo7SsJ9ZyklsZSZcIYlboQnHusXmieQL6KvtFqHEesL4CHVa2PBcPzxbZQiq4U#@#8LVxWkt@X5jcdo0TR2r9wRkBgpsHIC76XvYJLKJ32uFs0GPRdbVEIv7bld5Et6JnZrkXYadjm8cvJe7yiy5LTBsP@qBc33GWVTfS6GH9kU@sraV6z#e@y1nS1lfJQncaFxAStALFVdM9rrOtOF9tsAVkOT3IhRhrWy9u9MF3grXODeGKBn@6@LKseZ9CVCkYYQCpg3SJO3VfmicySFoxspY8CKCDRYcPxqCCQRDNO7XR7EeM#Xj54gcc#lHD2UNJj0OL7ekYw4zeiGPylwNm@0pm#4jzWF4BuE@qfnbE1d@4AJErCsX4Z4HNz@LP@9IyYKZp6fkw25QuPCZRBdGOMPKGvipRec3#27HJr5lVTe#WiZKcRGPIvpohOY9aS7DRNKhZDcT1qOJVwBkUXHVaDsblAtal9dAmeLfAlna4lSnapv3wveZmVaOAnmbGbuIegRGjWdwZriCZKLk3SKPSXBvb#tfUD539j3E4H1NoaYgfZpv87PpMcZRhpCa0zRLbMde2ES8wQ1Q26UhLexrk@yCenpQFB1OZerMVsAo#e1Wz6ivxefsXAe5hGuouky3KkfYXh4a1uHaCaXCPYtUq7JsV820Kijn8PZ0vmuiJvPSv7B0TQ5jrCR2NrRnyxHgAxxFI@r2#SVAJ4QFKIKC4pUPze75D@5bTQfhmUIrPM9HTrGxBpYl4i7Btp682BkmcC1uF9n1qcgXXXkXfJDMj@6UMZf67eJfxUG5h2wlZyO7S2awQB8i4oNhGU9oMOPDMemVyMWJoavU63B6gwmleNggq7JOEkhBmqft4gFM72ZttVQMk59BP9XCRo2UolFg#kpTz5Qsq9GxsOUfXGRk9AJeZxJNdOIfaIREw5vMg6TaA8ZuTRKeYyQYfVP8py8#sq2VfRmPKuHJmP9qICT9QYedHg6UplSYJfRhCCog7Ay1ZZtIhiWQnT#0wCNvowOZpOnkVJy3ko6ggjHeqZLnqiY1IFQfQVVWC7NlpDL9C3kAje9LWVVN3pJPz@RYuqkhmjNXMrFv6@MR34QoVpeQ9wFivgxVkoa7MymlEQ3lRj9maSSCZWIC9fYp61ppUmtKLvgPDrcqW2FF5htD9L@y00wHzTa3tlKfwmJGJrDxtDoMdAw5kM3r2v9HSvF4dcMtLz7qVLsKgHtUSWD@CeqxytpOWlpSgTIeWnM30vxQor8Qhf2djMs6cvOfq7TYesrSkSfu8BJibYRcmuIRWGJvizPzEilqnBhiPFo@WFJqvZblvhz60cs2RLEy07mD4a@ljRa2wiFOuJQ6dHwz6AdVFnWFY8IU8KgOmkugIOHB834BrjY5ByRTcV1BOFbD8b1$